
Adjoint work: Second Status Report

1. The code was built on the Altix with OpenMP enabled. The first port to the Altix
that gave correct results, that is, with tp_core_ad.F90 compiled at –O0 is
considered the baseline. Figure 1 shows elapsed time (ET) and speed-up (SU)
versus number of CPUs for the baseline. The figure also shows ET and SU for the
“compiler-optimized” build, that is, with tp_core_ad.F90 compiled at -O3 and
dummy aliasing enabled. The former scales “only fairly” up to 64 CPUs (with
SU of about 28) while the latter will not scale beyond 16 CPUs (with SU of about
4.0). Looking at the elapsed times, the combination of OpenMP with “compiler
optimization” for tp_core_ad.F90 reduced the elapsed time from about 41400
seconds for two time steps and five test vectors on a single CPU (with OpenMP
disabled and –O0 for tp_core_ad) to about 850 seconds on 16 CPUs (with
OpenMP enabled and –O3 for tp_core_ad), that is an aggregate speed-up of about
49. In summary, we started at about 7.76 hours per time step for five test vectors
for the c55 case and we are down to about 7.1 minutes.

Fig. 1: c55 Elapsed TIme and Speed-Up

1

10

100

1000

10000

100000

1 10 100 1000
No. of CPUs

E
la

p
se

d
 T

im
e
/

S
p

e
e
d

-U
p

S. Up (tp_c_ad,-O0)
Ideal

S. Up (tp_c_ad,-O3)
El.T(tp_c_ad,-O0)

El.T(tp_c_ad,-O3)

2. All attempts to manually recode the adjoint code to avoid dummy argument
aliasing have not produced the desired results. In the meantime, this will be
suspended so that attention can be focused on improving sequential performance
and scalability.

3. We have started looking for opportunities for sequential tuning and we will report
progress in due course.

4.

